Citation text plays a pivotal role in elucidating the connection between scientific documents, demanding an in-depth comprehension of the cited paper. Constructing citations is often time-consuming, requiring researchers to delve into extensive literature and grapple with articulating relevant content. To address this challenge, the field of citation text generation (CTG) has emerged. However, while earlier methods have primarily centered on creating single-sentence citations, practical scenarios frequently necessitate citing multiple papers within a single paragraph. To bridge this gap, we propose a method that leverages Large Language Models (LLMs) to generate multi-citation sentences. Our approach involves a single source paper and a collection of target papers, culminating in a coherent paragraph containing multi-sentence citation text. Furthermore, we introduce a curated dataset named MCG-S2ORC, composed of English-language academic research papers in Computer Science, showcasing multiple citation instances. In our experiments, we evaluate three LLMs LLaMA, Alpaca, and Vicuna to ascertain the most effective model for this endeavor. Additionally, we exhibit enhanced performance by integrating knowledge graphs from target papers into the prompts for generating citation text. This research underscores the potential of harnessing LLMs for citation generation, opening a compelling avenue for exploring the intricate connections between scientific documents.
翻译:暂无翻译