Neural networks' lack of robustness against attacks raises concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al., 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. Their stochastic properties make evaluation more challenging and render many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye et al., 2018a) used in BaRT's evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack ($4.3\times$ improvement). Our result indicates that the RT defense on the Imagenette dataset (a ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RT defense (called AdvRT), resulting in a large robustness gain. Code is available at https://github.com/wagner-group/demystify-random-transform.
翻译:神经网络缺乏抵御攻击的稳健性引起了对安全敏感环境(如自主车辆)的关注。 虽然许多对策可能看起来有希望, 但只有少数措施可以承受严格的评估。 使用随机变换(RT)的防御在图像网络上已经显示出令人印象深刻的结果, 特别是BaRT( Raff等人, 2019年) 。 然而, 还没有严格评价这种防御类型, 使得对它的稳健性特性的特性得不到很好的理解。 它们的随机变迁性特性使得评价更具挑战性, 使得许多对确定性模型的拟议攻击无法适用。 首先, 我们显示BART评价中使用的BPDA攻击(Athalye等人, 2018a)没有效力, 可能高估其强健性。 我们随后试图通过知情的变换选择和巴耶斯调整参数的优化来构建尽可能强的RT防御。 此外,我们创造了最强的打击性攻击来评价我们的RT防御。 我们的新攻击大大超出了基线, 与常用EOT攻击的19 %的减少准确性(4.time) 改进。 我们的结果表明, ST- RT在图像网络的大规模的防御研究中使用了我们最新的变变的系统, 。