The expected number of secondary infections arising from each index case, the reproduction number, or $R$ number is a vital summary statistic for understanding and managing epidemic diseases. There are many methods for estimating $R$; however, few of these explicitly model heterogeneous disease reproduction, which gives rise to superspreading within the population. Here we propose a parsimonious discrete-time branching process model for epidemic curves that incorporates heterogeneous individual reproduction numbers. Our Bayesian approach to inference illustrates that this heterogeneity results in less certainty on estimates of the time-varying cohort reproduction number $R_t$. Leave-future-out cross-validation evaluates the predictive performance of the proposed model, allowing us to assess epidemic curves for evidence of superspreading. We apply these methods to a COVID-19 epidemic curve for the Republic of Ireland and find some support for heterogeneous disease reproduction. We conclude that the 10\% most infectious index cases account for approximately 40-80\% of the expected secondary infections. Our analysis highlights the difficulties in identifying heterogeneous disease reproduction from epidemic curves and that heterogeneity is a vital consideration when estimating $R_t$.
翻译:每个指数病例、生殖数或美元数的预期二级感染数量是了解和管理流行病的重要简要统计。有多种方法估算美元;然而,这些明显模型的多种疾病繁殖很少,导致人口内部的超扩散。我们在这里建议为流行病曲线建立一个分散的离散时间分流过程模型,其中包括各不同生殖数。我们的巴伊西亚推理方法表明,这种异质性在估计时间变化的组群生殖数方面导致的确定性较低(R$ t$ )。请将休假期外交叉验证评估拟议模型的预测性能,使我们能够评估流行病曲线,以获得超扩展的证据。我们将这些方法应用于爱尔兰共和国的COVID-19流行病曲线,并找到对混合性疾病繁殖的一些支持。我们的结论是,10-最传染性指数病例占预期的二级感染的约40-80 ⁇ 。我们的分析强调了在确定流行病曲线的异性生殖方面的困难,而遗传性是估算美元的关键考虑。