Proper training and analytics in eSports require accurately collected and annotated data. Most eSports research focuses exclusively on in-game data analysis, and there is a lack of prior work involving eSports athletes' psychophysiological data. In this paper, we present a dataset collected from professional and amateur teams in 22 matches in League of Legends video game with more than 40 hours of recordings. Recorded data include the players' physiological activity, e.g. movements, pulse, saccades, obtained from various sensors, self-reported aftermatch survey, and in-game data. An important feature of the dataset is simultaneous data collection from five players, which facilitates the analysis of sensor data on a team level. Upon the collection of dataset we carried out its validation. In particular, we demonstrate that stress and concentration levels for professional players are less correlated, meaning more independent playstyle. Also, we show that the absence of team communication does not affect the professional players as much as amateur ones. To investigate other possible use cases of the dataset, we have trained classical machine learning algorithms for skill prediction and player re-identification using 3-minute sessions of sensor data. Best models achieved 0.856 and 0.521 (0.10 for a chance level) accuracy scores on a validation set for skill prediction and player re-id problems, respectively. The dataset is available at https://github.com/smerdov/eSports Sensors Dataset.


翻译:电子体育的适当培训和分析需要准确收集并附加说明的数据。大多数电子体育研究都专门侧重于游戏中的数据分析,而且缺乏涉及电子体育运动员心理生理学数据的先前工作。在本文中,我们展示了专业和业余团队在22场比赛中收集的数据集,这些数据集来自传说联盟视频游戏,有超过40小时的录音记录。记录的数据包括球员的生理活动,如运动、脉搏、塞卡德、从各种传感器获得的生理活动、自我报告的接合后调查和游戏数据。数据集的一个重要特点是五个球员同时收集数据,这有利于在团队一级分析传感器数据。在收集数据集时,我们进行了验证。特别是,我们表明专业球员的压力和集中程度不那么相关,意思是更独立的游戏风格。此外,我们显示团队沟通的缺失不会像业余球员一样影响专业球员。为了调查其他可能的数据集使用案例,我们用经典机器学习算法来进行技能预测,以及用0.8分钟的模型重新定位,以及用0.15秒的机员的精确度,我们用0.85秒的模型来进行实时数据验证。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员