A matrix is called totally negative (totally non-positive) of order $k$, if all its minors of size at most $k$ are negative (non-positive). The objective of this article is to provide several novel characterizations of total negativity via the (a) sign non-reversal property, (b) variation diminishing property, and (c) Linear Complementarity Problem. More strongly, each of these three characterizations uses a single test vector. As an application of the sign non-reversal property, we study the interval hull of two rectangular matrices. In particular, we identify two matrices in the interval hull that test total negativity of order $k$, simultaneously for the entire interval hull. We also prove analogous characterizations for totally non-positive matrices. These novel characterizations may be considered similar in spirit to fundamental results characterizing totally positive matrices by Brown-Johnstone-MacGibbon [J. Amer. Statist. Assoc. 1981] (see also Gantmacher-Krein, 1950), Choudhury-Kannan-Khare [Bull. London Math. Soc.}, in press] and Choudhury [2021 preprint].
翻译:本条的目的是通过(a) 标志性非反向财产,(b) 变异性财产,(c) 线性互补问题,对完全负(完全非正)一K美元,如果其体积以美元计的所有未成年人都是负(非正)一K美元,则称为完全负(完全非正)一K美元。本条款的目的是通过(a) 标志性非反向财产,(b) 变异性财产,(c) 线性互补问题,(c) 提供几种全负全负性全负性的新特征。更强烈地说,这三个特征中的每一个都使用一个单一的测试矢量。作为非反向标志性财产的应用,我们研究了两个矩形矩阵的间隔体。特别是,我们在中间体内确定了两个用来测试全间体正正值美元完全负性价值的矩阵。我们还证明了完全非正性矩阵的类似特征。这些新特征在精神上可以被视为类似于布朗-约翰斯通-马奇布顿[J. Amer. Assoc. Statist. Assoc.1981] (另见Gant-Krein-Krein-Kemply-Kan-Kan-Kan-Kan-Khour_Bill.