Consider the problem of covertly controlling a linear system. In this problem, Alice desires to control (stabilize or change the parameters of) a linear system, while keeping an observer, Willie, unable to decide if the system is indeed being controlled or not. We formally define the problem, under two different models: (i) When Willie can only observe the system's output (ii) When Willie can directly observe the control signal. Focusing on AR(1) systems, we show that when Willie observes the system's output through a clean channel, an inherently unstable linear system can not be covertly stabilized. However, an inherently stable linear system can be covertly controlled, in the sense of covertly changing its parameter. Moreover, we give direct and converse results for two important controllers: a minimal-information controller, where Alice is allowed to used only $1$ bit per sample, and a maximal-information controller, where Alice is allowed to view the real-valued output. Unlike covert communication, where the trade-off is between rate and covertness, the results reveal an interesting \emph{three--fold} trade--off in covert control: the amount of information used by the controller, control performance and covertness. To the best of our knowledge, this is the first study formally defining covert control.


翻译:考虑隐蔽控制线性系统的问题。 在这个问题中,爱丽丝希望控制(稳定或改变)线性系统(稳定或改变)线性系统的参数,同时保持观察者威利无法决定系统是否受到控制。我们正式根据两种不同模式来定义问题:(一) 当威利只能观察系统输出时;(二) 当威利能够直接观察控制信号时;(二) 当威利能够直接观察AR(1)系统时,我们显示,当威利通过清洁通道观察系统输出时,一个内在不稳定的线性系统不能被秘密稳定。然而,一个内在稳定的线性系统可以被秘密控制,从隐蔽改变其参数的意义上说。此外,我们给两个重要控制者提供了直接和反向的结果:一个最小的信息控制者,允许爱丽丝只使用每样只1美元,一个最大信息控制器,允许爱丽丝查看真实价值产出。与隐蔽通信不同,在率和隐蔽之间,结果显示一个有趣的\emph{3x) 。结果显示一个内在稳定的线性系统可以秘密控制。此外,我们最隐蔽的控制者将确定我们所使用的控制。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月18日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员