Several non-linear functions and machine learning methods have been developed for flexible specification of the systematic utility in discrete choice models. However, they lack interpretability, do not ensure monotonicity conditions, and restrict substitution patterns. We address the first two challenges by modelling the systematic utility using the Choquet Integral (CI) function and the last one by embedding CI into the multinomial probit (MNP) choice probability kernel. We also extend the MNP-CI model to account for attribute cut-offs that enable a modeller to approximately mimic the semi-compensatory behaviour using the traditional choice experiment data. The MNP-CI model is estimated using a constrained maximum likelihood approach, and its statistical properties are validated through a comprehensive Monte Carlo study. The CI-based choice model is empirically advantageous as it captures interaction effects while maintaining monotonicity. It also provides information on the complementarity between pairs of attributes coupled with their importance ranking as a by-product of the estimation. These insights could potentially assist policymakers in making policies to improve the preference level for an alternative. These advantages of the MNP-CI model with attribute cut-offs are illustrated in an empirical application to understand New Yorkers' preferences towards mobility-on-demand services.


翻译:开发了几种非线性功能和机器学习方法,以便灵活地说明离散选择模型的系统效用,然而,这些功能缺乏解释性,无法确保单一性条件,并限制替代模式。我们通过利用Choquet Integral (CI) 功能来模拟系统效用,并通过将CI嵌入多数值选择概率核心(MNP-CI)来应对前两个挑战。我们还扩展了MNP-CI模型,以考虑属性截断,使模型处理者能够利用传统选择实验数据来大致模仿半补偿行为。MNP-CI模型使用受限制的最大可能性方法估算,其统计特性通过蒙特卡洛综合研究得到验证。基于CI的选择模型在捕捉互动效应的同时保持单一性,具有实验性优势。它还提供了关于两个属性之间的互补性以及它们作为估计副产品的重要等级的信息。这些洞察可能帮助决策者制定政策,以改进替代选择的优惠水平。MNP-CI模型中带有属性切价的优势,在对纽约流动的实验性应用中展示了对目标的偏好。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
42+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员