Traffic time series forecasting is challenging due to complex spatio-temporal dynamics time series from different locations often have distinct patterns; and for the same time series, patterns may vary across time, where, for example, there exist certain periods across a day showing stronger temporal correlations. Although recent forecasting models, in particular deep learning based models, show promising results, they suffer from being spatio-temporal agnostic. Such spatio-temporal agnostic models employ a shared parameter space irrespective of the time series locations and the time periods and they assume that the temporal patterns are similar across locations and do not evolve across time, which may not always hold, thus leading to sub-optimal results. In this work, we propose a framework that aims at turning spatio-temporal agnostic models to spatio-temporal aware models. To do so, we encode time series from different locations into stochastic variables, from which we generate location-specific and time-varying model parameters to better capture the spatio-temporal dynamics. We show how to integrate the framework with canonical attentions to enable spatio-temporal aware attentions. Next, to compensate for the additional overhead introduced by the spatio-temporal aware model parameter generation process, we propose a novel window attention scheme, which helps reduce the complexity from quadratic to linear, making spatio-temporal aware attentions also have competitive efficiency. We show strong empirical evidence on four traffic time series datasets, where the proposed spatio-temporal aware attentions outperform state-of-the-art methods in term of accuracy and efficiency. This is an extended version of "Towards Spatio-Temporal Aware Traffic Time Series Forecasting", to appear in ICDE 2022 [1], including additional experimental results.
翻译:时间序列的预测具有挑战性,因为不同地点的时空动态时间序列复杂,往往具有不同的模式;在同一时间序列中,模式可能因时间而异,例如,一天中存在某些时间,表明更强烈的时间相关性。虽然最近的预测模型,特别是深层学习模型,显示了有希望的结果,但它们会因时间-时间-时间-时间-时间序列而受到影响。这种时空模型使用一个共享参数空间,而不论时间序列的位置和时间周期,它们假设时间模式在各地点之间相似,并且不会随时间而变化,而这可能并不总是保持,从而导致亚最佳的结果。在这项工作中,我们提议了一个框架,目的是将瞬时-时-时间模型转变为时-时间序列。为了做到这一点,我们把时间序列从不同的位置和时间-时间-时间-时间流模型的参数转换到更好地捕捉空间-时间-时间序列的注意,我们从这个模型到空间-时间-时间-时间流-时间流流流流流流流流流流流的注意,我们又如何将这个框架与直径-直径流-直径的观察-时间流-我们展示如何整合- 将观察-直观的注意力整合到电流-我们观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察-观察