Surface wettability is a critical design parameter for biomedical devices, coatings, and textiles. Contact angle measurements quantify liquid-surface interactions, which depend strongly on liquid formulation. Herein, we present the Robotic Autonomous Imaging Surface Evaluator (RAISE), a closed-loop, self-driving laboratory that is capable of linking liquid formulation optimization with surface wettability assessment. RAISE comprises a full experimental orchestrator with the ability of mixing liquid ingredients to create varying formulation cocktails, transferring droplets of prepared formulations to a high-throughput stage, and using a pick-and-place camera tool for automated droplet image capture. The system also includes an automated image processing pipeline to measure contact angles. This closed loop experiment orchestrator is integrated with a Bayesian Optimization (BO) client, which enables iterative exploration of new formulations based on previous contact angle measurements to meet user-defined objectives. The system operates in a high-throughput manner and can achieve a measurement rate of approximately 1 contact angle measurement per minute. Here we demonstrate RAISE can be used to explore surfactant wettability and how surfactant combinations create tunable formulations that compensate for purity-related variations. Furthermore, multi-objective BO demonstrates how precise and optimal formulations can be reached based on application-specific goals. The optimization is guided by a desirability score, which prioritizes formulations that are within target contact angle ranges, minimize surfactant usage and reduce cost. This work demonstrates the capabilities of RAISE to autonomously link liquid formulations to contact angle measurements in a closed-loop system, using multi-objective BO to efficiently identify optimal formulations aligned with researcher-defined criteria.


翻译:表面润湿性是生物医学设备、涂层和纺织品的关键设计参数。接触角测量可量化液体与表面的相互作用,这种相互作用在很大程度上取决于液体配方。本文介绍了一种名为"机器人自主成像表面评估器"(RAISE)的闭环自驱动实验室系统,该系统能够将液体配方优化与表面润湿性评估相结合。RAISE包含一个完整的实验编排器,具备混合液体成分以创建不同配方组合、将制备好的配方液滴转移至高通量平台,并使用拾取-放置相机工具进行自动液滴图像采集的能力。该系统还集成了自动图像处理流程以测量接触角。该闭环实验编排器与贝叶斯优化客户端集成,能够基于先前的接触角测量结果迭代探索新配方,以满足用户定义的目标。系统以高通量方式运行,测量速率可达每分钟约1次接触角测量。本文展示了RAISE可用于探索表面活性剂的润湿性,以及表面活性剂组合如何形成可调节配方以补偿纯度相关的变化。此外,多目标贝叶斯优化展示了如何根据特定应用目标实现精确和最优的配方。优化过程由合意性评分引导,该评分优先考虑处于目标接触角范围内、最大限度减少表面活性剂使用并降低成本的配方。本工作证明了RAISE在闭环系统中将液体配方与接触角测量自主关联的能力,通过多目标贝叶斯优化高效识别符合研究者定义标准的最优配方。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员