This survey paper is an expanded version of an invited keynote at the ThEdu'22 workshop, August 2022, in Haifa (Israel). After a short introduction on the developments of CAS, DGS and other useful technologies, we show implications in Mathematics Education, and in the broader frame of STEAM Education. In particular, we discuss the transformation of Mathematics Education into exploration-discovery-conjecture-proof scheme, avoiding usage as a black box . This scheme fits well into the so-called 4 C's of 21st Century Education. Communication and Collaboration are emphasized not only between humans, but also between machines, and between man and machine. Specific characteristics of the outputs enhance the need of Critical Thinking. The usage of automated commands for exploration and discovery is discussed, with mention of limitations where they exist. We illustrate the topic with examples from parametric integrals (describing a "cognitive neighborhood" of a mathematical notion), plane geometry, and the study of plane curves (envelopes, isoptic curves). Some of the examples are fully worked out, others are explained and references are given.
翻译:本综述论文是一篇针对2022年8月在以色列海法举行的ThEdu'22研讨会的邀请主旨演讲的扩展版本。在短暂的引言介绍计算机代数系统,动态几何软件和其他有用技术的发展后,我们阐述了它们在数学教育以及更广泛的STEAM教育领域的影响。特别地,我们讨论了将数学教育转化为勘探-发现-猜想-证明的模式,避免其作为一个黑匣子的使用。这种模式很好地适应21世纪教育的所谓4C原则。强调了沟通和合作,不仅是人际之间,而且是机器之间,人与机器之间。为了加强关键思维的需求,具体输出的特点得到了强调。我们讨论了使用自动命令进行勘探和发现的方式,并提到了它们存在的局限性。我们以参数积分(描述了数学概念的“认知邻居”)、平面几何和平面曲线研究(包络线、等曲线)的示例来说明这个主题。其中一些示例是完全解决的,其他一些则是解释性的,同时也提供了参考文献。