We present a novel compression algorithm for reducing the storage of LiDAR sensor data streams. Our model exploits spatio-temporal relationships across multiple LiDAR sweeps to reduce the bitrate of both geometry and intensity values. Towards this goal, we propose a novel conditional entropy model that models the probabilities of the octree symbols by considering both coarse level geometry and previous sweeps' geometric and intensity information. We then use the learned probability to encode the full data stream into a compact one. Our experiments demonstrate that our method significantly reduces the joint geometry and intensity bitrate over prior state-of-the-art LiDAR compression methods, with a reduction of 7-17% and 15-35% on the UrbanCity and SemanticKITTI datasets respectively.
翻译:我们提出了一个新的压缩算法来减少LIDAR传感器数据流的存储。 我们的模型在多个LIDAR扫描中利用spatio- 时间关系来减少几何和强度值的比特率。 为了实现这一目标, 我们提出一个新的有条件的模型, 通过考虑粗糙的几何和先前的扫描的几何和密度信息来模拟奥克特里符号的概率。 然后我们用所学的概率将整个数据流编码成一个紧凑的数据流。 我们的实验表明,我们的方法大大降低了比以前最先进的LIDAR压缩方法的联合几何和强度比特率,在城市中心和SmanticKITTI数据集中分别减少了7-17%和15-35%。