In this paper, we present a hybrid of Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) algorithms for numerically efficient global optimization of antenna arrays and metasurfaces. The hybrid EP-PSO algorithm uses an evolutionary optimization approach that incorporates swarm directions in the standard self-adaptive EP algorithm. As examples, we have applied this hybrid technique to two antenna problems: the side-lobe-level reduction of a non-uniform spaced (aperiodic) linear array and the beam shaping of a printed antenna loaded with a partially reflective metasurface. Detailed comparisons between the proposed hybrid EP-PSO technique and EP-only and PSO-only techniques are given, demonstrating the efficiency of this hybrid technique in the complex antenna design problems.
翻译:在本文中,我们介绍了一种渐进式编程(EP)和粒子冲冲优化(PSO)算法的混合法,用于在全球对天线阵列和表面表面进行数字高效优化;混合的EP-PSO算法采用进化优化法,将群态方向纳入标准的自适应式EP算法中;举例来说,我们将这种混合技术应用于两个天线问题:非统一空间(定期)线性阵列的边际级减缩和装有部分反射元表的印刷天线的波束成型;对拟议的混合EP-PSO技术与仅使用和仅使用EP-SO的技术进行了详细比较,以表明这种混合技术在复杂的天线设计问题中的效率。