We present a convex cone program to infer the latent probability matrix of a random dot product graph (RDPG). The optimization problem maximizes the Bernoulli maximum likelihood function with an added nuclear norm regularization term. The dual problem has a particularly nice form, related to the well-known semidefinite program relaxation of the MaxCut problem. Using the primal-dual optimality conditions, we bound the entries and rank of the primal and dual solutions. Furthermore, we bound the optimal objective value and prove asymptotic consistency of the probability estimates of a slightly modified model under mild technical assumptions. Our experiments on synthetic RDPGs not only recover natural clusters, but also reveal the underlying low-dimensional geometry of the original data. We also demonstrate that the method recovers latent structure in the Karate Club Graph and synthetic U.S. Senate vote graphs and is scalable to graphs with up to a few hundred nodes.
翻译:我们提出了一个组合锥体锥体程序,以推断随机点产品图(RDPG)的潜在概率矩阵。优化问题使伯努利最大可能性功能最大化,增加了核规范规范规范规范化的术语。双重问题的形式特别好,与众所周知的半无限期方案放松MaxCut问题有关。我们使用原始最佳条件,将原始和双重解决方案的条目和等级捆绑在一起。此外,我们结合了最佳客观价值,并证明在轻度技术假设下略作修改的模型的概率估计值没有一致性。我们对合成RDPG的实验不仅恢复了自然集群,而且还揭示了原始数据的基本低维度几何学。我们还表明,该方法恢复了卡拉特俱乐部图和合成的美国参议院投票图表中的潜在结构,并且可以用多达几百个节点的图表进行缩放。