In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs $\{c_e:e \in E\}$. The goal is to find an edge set $F\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\sum_{v \in V} \max \{c_e: e \in F \mbox{ is incident to } v\}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $4\sqrt{2k}$-approximation algorithm for general costs.
翻译:在最起码的电力网络设计问题中,我们得到一个未引导的图形$G=(V,E)$,边际成本$c_e:e\\ e\ e\ e\ $E ⁇ $。目标是找到一个边缘设置$F\ subseqeq E$,满足最低功率规定特性$p_c(F)\sump ⁇ v\in V}\max {c_e:e\ in F\mbox{是发生在} v ⁇ $。在公有权力中, $k$ Edge Disjoint $st$st- paths 问题中,$F$应该包含$k$ 边端脱钩 $stst$- paths。 问题认可了美元接近法,即使单位成本,它是否接受美元近似比亚线值的亚线性比值($k)是一个公开的问题。我们给出了一般成本的4\ qrt{2k}-approxation算法。