There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton's equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic Henon-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error in the predicted phase space trajectories.
翻译:应用机器学习来研究动态系统引起了一股兴趣。 我们提出了一个汉密尔顿神经网络, 解决管理动态系统的不同方程式。 这是一个由方程式驱动的机器学习方法, 网络的优化进程完全取决于预测的函数, 而不使用任何地面真相数据。 模型学会了满足汉密尔顿的方程式的解决方案, 从而保护汉密尔顿的变异体。 选择一个适当的激活功能会大大提高网络的可预测性。 此外, 一项错误分析被导出, 并声明数字错误取决于整个网络的性能。 然后, 汉密尔顿网络被用于解决非线性振动器和混乱的赫诺- 海尔斯动态系统的方程式。 在两种系统中, 一个静电成像器需要两个比汉密尔顿网络更多的评价点, 以便实现预测空间轨迹中数字错误的顺序。