The ability to recognise emotions lends a conversational artificial intelligence a human touch. While emotions in chit-chat dialogues have received substantial attention, emotions in task-oriented dialogues remain largely unaddressed. This is despite emotions and dialogue success having equally important roles in a natural system. Existing emotion-annotated task-oriented corpora are limited in size, label richness, and public availability, creating a bottleneck for downstream tasks. To lay a foundation for studies on emotions in task-oriented dialogues, we introduce EmoWOZ, a large-scale manually emotion-annotated corpus of task-oriented dialogues. EmoWOZ is based on MultiWOZ, a multi-domain task-oriented dialogue dataset. It contains more than 11K dialogues with more than 83K emotion annotations of user utterances. In addition to Wizard-of-Oz dialogues from MultiWOZ, we collect human-machine dialogues within the same set of domains to sufficiently cover the space of various emotions that can happen during the lifetime of a data-driven dialogue system. To the best of our knowledge, this is the first large-scale open-source corpus of its kind. We propose a novel emotion labelling scheme, which is tailored to task-oriented dialogues. We report a set of experimental results to show the usability of this corpus for emotion recognition and state tracking in task-oriented dialogues.
翻译:认识情感的能力使得对情绪的认知成为了一种对话的人工智能。虽然在聊天对话中,情绪受到大量关注,但在以任务为导向的对话中,情绪基本上没有得到解决。尽管情感和对话成功在自然系统中具有同样重要的作用。现有的情绪和对话成功在自然系统中具有同样重要的作用。现有的情绪附加说明的任务导向公司在规模、标签丰富性和公众可用性方面受到限制,为下游任务制造了瓶颈。为了为在以任务为导向的对话中研究情感奠定基础,我们引入了EmoWOZ,这是一个大规模人工操作的情感附加说明式任务导向的对话。EmoWOZ以多功能面向任务的对话为基础,这是一个多功能面向任务的对话数据集。它包含超过11K的对话,拥有超过83K的用户语调说明。除了多维兹的“奥兹向导师”对话之外,我们还在一系列领域内收集人体机器对话,以充分覆盖在以任务为导向的对话系统中可能发生的各种情感空间。我们最了解的情况是,这是其同类对话的第一个大型开放源。我们建议一个面向情感对话的大规模源码。我们提出的一个面向感官性对话的跟踪计划,以展示我们这个面向感官的情感的感官能。