In recent years, the manufacturing sector has been responsible for nearly 55 percent of total energy consumption, inducing a major impact on the global ecosystem. Although stricter regulations, restrictions on heavy manufacturing and technological advances are increasing its sustainability, zero-emission and fuel-efficient manufacturing is still considered a utopian target. In parallel,companies that have invested in digital innovation now need to align their internal competencies to maximize their return on investment. Moreover, a primary feature of Industry 4.0 is the digitization of production processes, which offers the opportunity to optimize energy consumption. However, given the speed with which innovation manifests itself, tools capable of measuring the impact that technology is having on digital and green professions and skills are still being designed. In light of the above, in this article we present the Worker Profiler, a software designed to map the skills currently possessed by workers, identifying misalignment with those they should ideally possess to meet the renewed demands that digital innovation and environmental preservation impose. The creation of the Worker Profiler consists of two steps: first, the authors inferred the key technologies and skills for the area of interest, isolating those with markedly increasing patent trends and identifying green and digital enabling skills and occupations. Thus, the software was designed and implemented at the user-interface level. The output of the self-assessment is the definition of the missing digital and green skills and the job roles closest to the starting one in terms of current skills; both the results enable the definition of a customized retraining strategy. The tool has shown evidence of being user-friendly, effective in identifying skills gaps and easily adaptable to other contexts.


翻译:近年来,制造业部门对能源消费总量的近55%负有责任,这对全球生态系统产生了重大影响。尽管更严格的监管、对重制造业和技术进步的限制正在增加其可持续性,但零排放和节能制造业仍被视为乌托邦目标。与此同时,投资于数字创新的公司现在需要调整其内部能力,以最大限度地实现投资回报。此外,工业4.0的一个主要特征是生产流程的数字化,这为优化能源消费提供了机会。然而,鉴于创新表现的迅速性,仍然在设计能够衡量技术对数字和绿色专业及技能的影响的工具。根据上述情况,我们介绍“工人剖析仪”这一软件,旨在绘制工人目前拥有的技能,查明他们最好拥有的技能与这些技能的不匹配,以满足数字创新和环境保护带来的新要求。创建“工人剖析仪”包括两个步骤:第一,作者为感兴趣的领域推断了关键技术和技能,区分了显著增长的专利趋势,确定了最新的用户技能和技能。在“绿色和数字工具”定义中,采用了“绿色和数字工具”的最新技能。因此,在“绿色工具”定义和行业中采用了“绿色工具”的自我评估。因此,在“绿色和“绿色工具”定义中采用了“绿色工具”的自我评估。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员