The Metaverse, an emerging digital space, is expected to offer various services mirroring the real world. Wireless communications for mobile Metaverse users should be tailored to meet the following user characteristics: 1) emphasizing application-specific perceptual utility instead of simply the transmission rate, 2) concerned with energy efficiency due to the limited device battery and energy intensiveness of some applications, and 3) caring about security as the applications may involve sensitive personal data. To this end, this paper incorporates application-specific utility, energy efficiency, and physical-layer security (PLS) into the studied optimization in a wireless network for the Metaverse. Specifically, after introducing utility-energy efficiency (UEE) to represent each Metaverse user's application-specific objective under PLS, we formulate an optimization to maximize the network's weighted sum-UEE by deciding users' transmission powers and communication bandwidths. The formulated problem belongs to the sum-of-ratios optimization, for which prior studies have demonstrated its difficulty. Nevertheless, our proposed algorithm 1) obtains the global optimum for the weighted sum-UEE optimization, via a transform to parametric convex optimization problems, 2) applies to any utility function which is concave, increasing, and twice differentiable, and 3) achieves a linear time complexity in the number of users (the optimal complexity in the order sense). Simulations confirm the superiority of our algorithm over other approaches. We explain that our technique for solving the sum-of-ratios optimization is applicable to other optimization problems in wireless networks and mobile computing.


翻译:元数据是一个新兴的数字空间,预计将提供反映真实世界的各种服务。移动元数据用户的无线通信应适应以下用户特点:1)强调具体应用的感知效用,而不是简单的传输率;2)由于某些应用的装置电池和能源密集度有限而关注能源效率;3)关注安全,因为应用可能涉及敏感的个人数据;为此,本文件将具体应用的效用、能源效率和物理级安全(PLS)纳入Meteval的无线网络的优化研究中。具体而言,在采用通用能源效率(UE)以代表每个Metevel用户的应用程序具体目标之后,我们制定优化,通过决定用户的传输能力和通信带宽度来最大限度地提高网络的加权和精度;以及3)制定的问题在于对应用的“总和度优化,因为先前的研究表明它有困难。然而,我们提议的算法1)通过将加权和精度的UEE优化纳入Metversal网络的优化。具体来说,在引入了通用能源效率(UEE) 之后,我们为代表每个Metverse用户的应用程序的具体目标特定目标目标目标,2,通过决定优化的精度的精度的精度的精度的精度的精度和精度的精度的精度的精度的精度的精度,对于我们最精度的精度的精度,其精度的精度的精度的精度的精度的精度的精度的精度的精度,其精度的精度的精度的精度的精度,其精度的精度的精度的精度的精度,其精度的精度,在精确度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精</s>

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员