There has been a substantial amount of research involving computer methods and technology for the detection and recognition of diabetic foot ulcers (DFUs), but there is a lack of systematic comparisons of state-of-the-art deep learning object detection frameworks applied to this problem. DFUC2020 provided participants with a comprehensive dataset consisting of 2,000 images for training and 2,000 images for testing. This paper summarises the results of DFUC2020 by comparing the deep learning-based algorithms proposed by the winning teams: Faster R-CNN, three variants of Faster R-CNN and an ensemble method; YOLOv3; YOLOv5; EfficientDet; and a new Cascade Attention Network. For each deep learning method, we provide a detailed description of model architecture, parameter settings for training and additional stages including pre-processing, data augmentation and post-processing. We provide a comprehensive evaluation for each method. All the methods required a data augmentation stage to increase the number of images available for training and a post-processing stage to remove false positives. The best performance was obtained from Deformable Convolution, a variant of Faster R-CNN, with a mean average precision (mAP) of 0.6940 and an F1-Score of 0.7434. Finally, we demonstrate that the ensemble method based on different deep learning methods can enhanced the F1-Score but not the mAP.
翻译:利用计算机方法和技术进行了大量研究,以探测和识别糖尿病脚溃疡(DFUU),涉及计算机方法和技术,以探测和识别糖尿病足部溃疡(DFUU2020),但缺乏对适用于这一问题的最先进的深学习对象检测框架的系统比较;DFUC220向参与者提供了一套全面的数据集,其中包括2 000张用于培训的图像和2 000张用于测试的图像;本文总结了DFUC202020的成果,比较了获胜团队提议的深层次学习算法:更快的R-CNN、三种变异的R-CNN和一套混合方法;YOLOv3;YOLOv5;高效的Det;以及一个新的累加注意网络。对于每一种深层学习方法,我们详细描述了培训的模型结构、参数设置以及包括预处理、数据增强和后处理在内的其他阶段。我们为每一种方法提供了全面的评估。所有方法都需要数据增强阶段,以增加可用于培训的图像数量,并有一个后处理阶段消除假的阳性。最佳性表现来自不易变式的F9-S 高级精度学习方法,我们可改进的F-ROM-CR-CLA-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-S的精度的精度的精度的精度的精度。