Accurate assessment of systematic uncertainties is an increasingly vital task in physics studies, where large, high-dimensional datasets, like those collected at the Large Hadron Collider, hold the key to new discoveries. Common approaches to assessing systematic uncertainties rely on simplifications, such as assuming that the impact of the various sources of uncertainty factorizes. In this paper, we provide realistic example scenarios in which this assumption fails. We introduce an algorithm that uses Gaussian process regression to estimate the impact of systematic uncertainties \textit{without} assuming factorization. The Gaussian process models are enhanced with derivative information, which increases the accuracy of the regression without increasing the number of samples. In addition, we present a novel sampling strategy based on Bayesian experimental design, which is shown to be more efficient than random and grid sampling in our example scenarios.


翻译:在物理学研究中,系统不确定性的精确评估正日益成为至关重要的任务,尤其是在大型高维数据集(如大型强子对撞机所收集的数据)成为新发现关键所在的情况下。评估系统不确定性的常用方法依赖于简化假设,例如假定各类不确定性来源的影响可因子化。本文通过现实案例场景展示了该假设失效的情形。我们提出一种基于高斯过程回归的算法,用于估计系统不确定性的影响,且无需假设因子化条件。该高斯过程模型通过引入导数信息得到增强,从而在不增加样本数量的前提下提高了回归精度。此外,我们提出一种基于贝叶斯实验设计的新型采样策略,在示例场景中证明其相较于随机采样与网格采样具有更高效率。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年5月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员