In this paper, we relate a feedback channel with any finite-order autoregressive moving-average (ARMA) Gaussian noises to a variant of the Kalman filter. In light of this, we obtain relatively explicit lower bounds on the feedback capacity for such colored Gaussian noises, and the bounds are seen to be consistent with various existing results in the literature. Meanwhile, this variant of the Kalman filter also leads to explicit recursive coding schemes with clear structures to achieve the lower bounds. In general, our results provide an alternative perspective while pointing to potentially tighter bounds for the feedback capacity problem.


翻译:在本文中,我们将一个反馈渠道与任何定序自动递减移动-平均(ARMA)高斯噪音连接到卡尔曼过滤器的变体中。 有鉴于此,我们对这种有色高斯噪音的反馈能力有了相对明确的较低限制,其范围被认为与文献中的各种现有结果一致。 同时,卡尔曼过滤器的这一变体还导致明确的循环编码计划,其结构明确,以实现较低范围。 一般来说,我们的结果提供了另一种观点,同时指出对反馈能力问题可能存在更严格的限制。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
专知会员服务
51+阅读 · 2020年12月14日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Model-based clustering of partial records
Arxiv
0+阅读 · 2021年7月19日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员