In this study, we compared two groups, in which subjects were assigned to either the treatment or the control group. In such trials, if the efficacy of the treatment cannot be demonstrated in a population that meets the eligibility criteria, identifying the subgroups for which the treatment is effective is desirable. Such subgroups can be identified by estimating heterogeneous treatment effects (HTE). In recent years, methods for estimating HTE have increasingly relied on complex models. Although these models improve the estimation accuracy, they often sacrifice interpretability. Despite significant advancements in the methods for continuous or univariate binary outcomes, methods for multiple binary outcomes are less prevalent, and existing interpretable methods, such as the W-method and A-learner, while capable of estimating HTE for a single binary outcome, still fail to capture the correlation structure when applied to multiple binary outcomes. We thus propose two methods for estimating HTE for multiple binary outcomes: one based on the W-method and the other based on the A-learner. We also demonstrate that the conventional A-learner introduces bias in the estimation of the treatment effect. The proposed method employs a framework based on reduced-rank regression to capture the correlation structure among multiple binary outcomes. We correct for the bias inherent in the A-learner estimates and investigate the impact of this bias through numerical simulations. Finally, we demonstrate the effectiveness of the proposed method using a real data application.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员