Data obfuscation deals with the problem of masking a data-set in such a way that the utility of the data is maximized while minimizing the risk of the disclosure of sensitive information. To protect data we address some ways that may as well retain its statistical uses to some extent. One such way is to mask a data with additive noise and revert to certain desired parameters of the original distribution from the knowledge of the noise distribution and masked data. In this project, we discuss the estimation of any desired quantile and range of a quantitative data set masked with additive noise.
翻译:数据混淆处理的是掩盖数据集的问题,以最大化数据的效用,同时最小化敏感信息的披露风险。为了保护数据,我们提出了一些方法,可以在一定程度上保留其统计用途。其中一种方法是用加性噪声掩盖数据,并从噪声分布和掩盖数据的知识中恢复到原始分布的某些期望参数。在此项目中,我们讨论了用加性噪声掩盖的定量数据集的任何期望分位数和范围的估计。