The desire to apply machine learning techniques in safety-critical environments has renewed interest in the learning of partial functions for distinguishing between positive, negative and unclear observations. We contribute to the understanding of the hardness of this problem. Specifically, we consider partial Boolean functions defined by a pair of Boolean functions $f, g \colon \{0,1\}^J \to \{0,1\}$ such that $f \cdot g = 0$ and such that $f$ and $g$ are defined by disjunctive normal forms or binary decision trees. We show: Minimizing the sum of the lengths or depths of these forms while separating disjoint sets $A \cup B = S \subseteq \{0,1\}^J$ such that $f(A) = \{1\}$ and $g(B) = \{1\}$ is inapproximable to within $(1 - \epsilon) \ln (|S|-1)$ for any $\epsilon > 0$, unless P=NP.


翻译:在安全临界环境中应用机器学习技术的愿望使人们重新有兴趣学习部分功能,以区分正、负和不明确的观测结果。 我们有助于理解这一问题的难度。 具体地说, 我们考虑由一对布林函数定义的部分布林函数 $f, g\cron ⁇ 0, 1 ⁇ J\to ⁇ 0, 1 ⁇ ⁇ $, 这样, $f\cdot g = 0美元 = 美元, 并且 美元和 $g 美元由分流的正常形式或二进制决定树来定义。 我们显示: 将这些表格的长度或深度之和最小化, 分离时设置 $A\ cup B = S\subseseq ⁇ 0, 1 ⁇ J 美元, 美元= $g(B) = $1 ⁇ = ⁇ 1 ⁇ = 美元, 除非 P=NP 。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
12+阅读 · 2019年7月1日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月25日
Arxiv
0+阅读 · 2021年4月22日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
已删除
将门创投
12+阅读 · 2019年7月1日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员