In the statistical literature, as well as in artificial intelligence and machine learning, measures of discrepancy between two probability distributions are largely used to develop measures of goodness-of-fit. We concentrate on quadratic distances, which depend on a non-negative definite kernel. We propose a unified framework for the study of two-sample and k-sample goodness of fit tests based on the concept of matrix distance. We provide a succinct review of the goodness of fit literature related to the use of distance measures, and specifically to quadratic distances. We show that the quadratic distance kernel-based two-sample test has the same functional form with the maximum mean discrepancy test. We develop tests for the $k$-sample scenario, where the two-sample problem is a special case. We derive their asymptotic distribution under the null hypothesis and discuss computational aspects of the test procedures. We assess their performance, in terms of level and power, via extensive simulations and a real data example. The proposed framework is implemented in the QuadratiK package, available in both R and Python environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员