In this paper, we provide the foundations for deriving the distributional properties of the smooth Euler characteristic transform. Motivated by functional data analysis, we propose two algorithms for testing hypotheses on random shapes based on these foundations. Simulation studies are provided to support our mathematical derivations and show the performance of our hypothesis testing framework. We apply our proposed algorithms to analyze a data set of mandibular molars from four genera of primates to test for shape differences and interpret the corresponding results from the morphology viewpoint. Our discussions connect the following fields: algebraic and computational topology, probability theory and stochastic processes, Sobolev spaces and functional analysis, statistical inference, morphology, and medical imaging.
翻译:在本文中,我们为分析光滑的尤勒特征变形的分布特性提供了基础。在功能数据分析的推动下,我们提出了两种算法,用于根据这些基数的随机形状测试假设。提供了模拟研究,以支持我们的数学推算并展示我们的假设测试框架的性能。我们应用了我们提议的算法,以分析由四个灵长类基因组成的圆形摩尔的数据集,以测试形状差异,并解释形态学观点的相应结果。我们的讨论将以下领域联系起来:代数和计算表层学、概率理论和切片过程、索博列夫空间和功能分析、统计推断、形态学和医学成像学。