In machine learning, it is common to optimize the parameters of a probabilistic model, modulated by an ad hoc regularization term that penalizes some values of the parameters. Regularization terms appear naturally in Variational Inference (VI), a tractable way to approximate Bayesian posteriors: the loss to optimize contains a Kullback--Leibler divergence term between the approximate posterior and a Bayesian prior. We fully characterize which regularizers can arise this way, and provide a systematic way to compute the corresponding prior. This viewpoint also provides a prediction for useful values of the regularization factor in neural networks. We apply this framework to regularizers such as L2, L1 or group-Lasso.
翻译:在机器学习中,通常会优化概率模型的参数,以一个特别的正规化术语加以调整,以惩罚参数的某些值。常规化术语自然出现在变异推断(VI)中,这是接近贝叶西亚后代的可移动方式:优化损失包含大约后代和先前的巴耶斯人之间的Kullback-leiber差异术语。我们充分说明哪些正规化者可以这样产生,并提供一个系统的方法来计算相应的前代值。这个观点还预测神经网络中正规化因素的有用值。我们对L2、L1或集团-Lasso等正规化者适用这一框架。