Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment and balance datasets. It is important to generate synthetic images that incorporate a diverse range of features such that they accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem can impact a Generative Adversarial Network's capacity to generate diversified images. The mode collapse comes in two varieties; intra-class and inter-class. In this paper, the intra-class mode collapse problem is investigated, and its subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization for the Deep Convolutional GAN to alleviate the intra-class mode collapse problem. Results demonstrate that the DCGAN with adaptive input-image normalization outperforms DCGAN with un-normalized X-ray images as evident by the superior diversity scores.
翻译:由于目标疾病的罕见性,生物医学图像数据集可能不平衡。 基因反转网络通过生成合成图像来扩大和平衡数据集,在解决这种不平衡方面发挥着关键作用。 制作合成图像时,必须包含各种特征,以便准确反映培训图像中特征的分布。 此外,合成图像中缺乏多种特征可以降低机器学习分类器的性能。 模式崩溃问题可能影响基因反转网络生成多种图像的能力。 模式崩溃分为两种:阶级内部和阶级间。 在本文中,对类内模式崩溃问题进行了调查,并对随后对合成X光图像多样性的影响进行了评估。 这项工作有助于实证地展示了将深层革命GAN的适应性投入-图像正常化整合起来以缓解类内模式崩溃问题的好处。 结果表明,具有适应性投入-影像正常化的DCGAN将DCGAN转化为不正规的X光图像,这在高级多样性分级中显而易见。