Model-free reinforcement learning (RL) is a powerful approach for learning control policies directly from high-dimensional state and observation. However, it tends to be data-inefficient, which is especially costly in robotic learning tasks. On the other hand, optimal control does not require data if the system model is known, but cannot scale to models with high-dimensional states and observations. To exploit benefits of both model-free RL and optimal control, we propose time-to-reach-based (TTR-based) reward shaping, an optimal control-inspired technique to alleviate data inefficiency while retaining advantages of model-free RL. This is achieved by summarizing key system model information using a TTR function to greatly speed up the RL process, as shown in our simulation results. The TTR function is defined as the minimum time required to move from any state to the goal under assumed system dynamics constraints. Since the TTR function is computationally intractable for systems with high-dimensional states, we compute it for approximate, lower-dimensional system models that still captures key dynamic behaviors. Our approach can be flexibly and easily incorporated into any model-free RL algorithm without altering the original algorithm structure, and is compatible with any other techniques that may facilitate the RL process. We evaluate our approach on two representative robotic learning tasks and three well-known model-free RL algorithms, and show significant improvements in data efficiency and performance.


翻译:无模型强化学习(RL)是直接从高维状态和观测中学习控制政策的有力方法,但往往缺乏数据效率,在机器人学习任务方面成本特别高。另一方面,如果系统模型为人所知,则最佳控制并不要求数据,但不能扩大到高维状态和观测模式。为了利用无模型强化学习和最佳控制的好处,我们提议采用基于时间到距离(基于TR)的奖励制导(基于TTR)的最佳控制激励技术,以降低数据效率,同时保留无模型RL的优势。这是通过利用TTR功能总结关键系统模型信息,以大大加快RL进程实现的。正如我们模拟结果所示,TTR功能被界定为从任何状态向假设系统动态制约下的目标移动的最短时间。由于TTR功能在计算上难以为高维度系统计算,因此我们为仍然捕捉到关键动态行为的近似、低度系统模型系统模型模型模型模型模型。我们的方法可以灵活和容易地纳入任何无模型的 RL 算法中,我们在不改变原始运算法结构结构中可以灵活地学习任何显著的 R 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2020年11月22日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员