Perceptual hashes map images with identical semantic content to the same $n$-bit hash value, while mapping semantically-different images to different hashes. These algorithms carry important applications in cybersecurity such as copyright infringement detection, content fingerprinting, and surveillance. Apple's NeuralHash is one such system that aims to detect the presence of illegal content on users' devices without compromising consumer privacy. We make the surprising discovery that NeuralHash is approximately linear, which inspires the development of novel black-box attacks that can (i) evade detection of "illegal" images, (ii) generate near-collisions, and (iii) leak information about hashed images, all without access to model parameters. These vulnerabilities pose serious threats to NeuralHash's security goals; to address them, we propose a simple fix using classical cryptographic standards.
翻译:这些算法在网络安全方面有着重要的应用,例如版权侵犯检测、内容指纹和监视。苹果的NeuralHash是一个这样的系统,目的是在不损害消费者隐私的情况下发现用户设备上存在非法内容。我们令人惊讶地发现NeuralHash大约是线性的,它刺激了新颖黑盒袭击的发展,从而(一) 逃避“非法”图像的探测,(二) 产生近乎阴极的图像,(三) 有关散装图像的信息泄露,所有这些都没有模型参数。这些脆弱性对NeuralHash的安全目标构成了严重威胁;为了解决这些问题,我们建议使用古典加密标准简单修正。