Inverse problems in fluid dynamics are ubiquitous in science and engineering, with applications ranging from electronic cooling system design to ocean modeling. We propose a general and robust approach for solving inverse problems in the steady-state Navier-Stokes equations by combining deep neural networks and numerical partial differential equation (PDE) schemes. Our approach expresses numerical simulation as a computational graph with differentiable operators. We then solve inverse problems by constrained optimization, using gradients calculated from the computational graph with reverse-mode automatic differentiation. This technique enables us to model unknown physical properties using deep neural networks and embed them into the PDE model. We demonstrate the effectiveness of our method by computing spatially-varying viscosity and conductivity fields with deep neural networks (DNNs) and training the DNNs using partial observations of velocity fields. We show that the DNNs are capable of modeling complex spatially-varying physical fields with sparse and noisy data. Our implementation leverages the open access ADCME, a library for solving inverse modeling problems in scientific computing using automatic differentiation.
翻译:流体动态的反面问题是科学和工程中普遍存在的,其应用范围从电子冷却系统设计到海洋建模等,我们建议一种一般和稳健的方法,通过将深神经网络和数字部分方程(PDE)组合起来,解决稳定状态纳维-斯托克斯方程式中的反面问题。我们的方法表示数字模拟是同不同操作员的计算图。然后我们通过限制优化,利用计算图中计算出的梯度,以反向模式自动区分,来解决反向问题。这种技术使我们能够利用深神经网络和海洋模型来模拟未知的物理特性。我们通过利用深神经网络和PDE模型来计算空间变化的透镜和导电场,以及利用对速度场的部分观测来培训DNNS,来展示我们的方法的有效性。我们显示DNN能够用稀有和噪音的数据模拟复杂的空间变化物理场。我们的实施利用开放访问ADCME,这是一个用自动差异来解决科学计算反向模型问题的图书馆。