Public clouds provide impressive capability through resource sharing. However, recent works have shown that the reuse of IP addresses can allow adversaries to exploit the latent configurations left by previous tenants. In this work, we perform a comprehensive analysis of the effect of cloud IP address allocation on exploitation of latent configuration. We first develop a statistical model of cloud tenant behavior and latent configuration based on literature and deployed systems. Through these, we analyze IP allocation policies under existing and novel threat models. Our resulting framework, EIPSim, simulates our models in representative public cloud scenarios, evaluating adversarial objectives against pool policies. In response to our stronger proposed threat model, we also propose IP scan segmentation, an IP allocation policy that protects the IP pool against adversarial scanning even when an adversary is not limited by number of cloud tenants. Our evaluation shows that IP scan segmentation reduces latent configuration exploitability by 97.1% compared to policies proposed in literature and 99.8% compared to those currently deployed by cloud providers. Finally, we evaluate our statistical assumptions by analyzing real allocation and configuration data, showing that results generalize to deployed cloud workloads. In this way, we show that principled analysis of cloud IP address allocation can lead to substantial security gains for tenants and their users.


翻译:公共云层通过资源共享提供了令人印象深刻的能力。然而,最近的工作表明,对IP地址的重新利用可以让对手利用前租户留下的潜在配置。在这项工作中,我们全面分析云化IP地址分配对潜在配置的影响。我们首先根据文献和部署的系统开发云层承租人行为和潜在配置的统计模型。我们通过这些模型分析现有和新颖威胁模型下的IP分配政策。我们由此产生的框架EIPSim在具有代表性的公共云情景中模拟了我们的模型,对照集合政策评价了对抗性目标。为了应对我们更强的拟议威胁模式,我们还提议了IP扫描分割,即知识产权分配政策,保护知识产权库不受对抗性扫描的影响,即使对手不受云层承租人数目的限制。我们的评估表明,IP扫描将潜在配置利用率降低97.1%,与文献中提议的政策相比,99.8%与云源供应商目前部署的政策相比,我们通过分析真实的配置数据和配置数据来评估我们的统计假设,显示所部署的云层工作量将得出总体结果。我们展示了对云层IP地址分配进行有原则性的分析,从而为租户和用户获得重大安全收益。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月14日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员