Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals. To solve this task, a min-entropy estimator relative to the Wiener measure in path space was introduced by Lavenant et al. arXiv:2102.09204, and shown to consistently recover the dynamics of a large class of drift-diffusion processes from the solution of an infinite dimensional convex optimization problem. In this paper, we introduce a grid-free algorithm to compute this estimator. Our method consists in a family of point clouds (one per snapshot) coupled via Schr\"odinger bridges which evolve with noisy gradient descent. We study the mean-field limit of the dynamics and prove its global convergence at an exponential rate to the desired estimator. Overall, this leads to an inference method with end-to-end theoretical guarantees that solves an interpretable model for trajectory inference. We also present how to adapt the method to deal with mass variations, a useful extension when dealing with single cell RNA-sequencing data where cells can branch and die.
翻译:Lavenant 等人 : 2102.092 204, 并显示从无限维度 convex 优化问题的解决方案中不断恢复一大批漂流过程的动态。 在本文中, 我们引入了一种无网格的算法来计算这个测深仪。 为了完成这项任务, Lavenant 等人在路径空间中引入了一个与Wiener测量相伴的微光量云( 单光谱) 的微光测量仪。 我们研究该动态的平均值极限, 并以指数速度证明其与理想的测深仪的全球趋同。 总体而言, 这导致一种归端理论保证的推论方法, 解决了可解释的轨迹推断模型。 我们还介绍了如何调整该方法来应对质量变化。 当处理单细胞序列序列数据时, 一个有用的延伸范围。