Given functional data from a survival process with time-dependent covariates, we derive a smooth convex representation for its nonparametric log-likelihood functional and obtain its functional gradient. From this, we devise a generic gradient boosting procedure for estimating the hazard function nonparametrically. An illustrative implementation of the procedure using regression trees is described to show how to recover the unknown hazard. The generic estimator is consistent if the model is correctly specified; alternatively, an oracle inequality can be demonstrated for tree-based models. To avoid overfitting, boosting employs several regularization devices. One of them is step-size restriction, but the rationale for this is somewhat mysterious from the viewpoint of consistency. Our work brings some clarity to this issue by revealing that step-size restriction is a mechanism for preventing the curvature of the risk from derailing convergence.
翻译:以基于时间的共变数的存续过程中的功能性数据为根据,我们得出一个非参数逻辑类比功能的顺畅曲线表示,并获得其功能梯度。从这一点,我们设计了一个通用梯度增强程序,用于以非对称方式估计危险函数。用回归树来说明如何恢复未知的危害。如果模型的指定正确,通用估计值是一致的;或者,可以对基于树木的模型显示一个角的不平等。为了避免过度装配,可以使用几种正规化装置。其中一种是分步尺限制,但从一致性的观点看,这样做的理由有些神秘。我们的工作揭示了分步限制是防止趋同风险的曲调机制,从而对这个问题作了一些澄清。