In this paper, we develop a systematic theory for high dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new \emph{U}~type test statistic to test linear hypotheses and establish a high dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be applied to deal with the classical one-way multivariate ANOVA and the nonparametric one-way MANOVA in high dimensions. To implement the test procedure in practice, we introduce a sample-splitting based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.
翻译:在本文中,我们开发了对多变量线性回归差异进行高维分析的系统理论, 其尺寸和系数数量随样本大小而增长。 我们提出一个新的 emph{U ⁇ 类型测试统计, 以测试线性假设, 在相当温和的假设下建立高斯的高度近似结果。 我们的一般框架和理论可以用于处理传统的单向多变量ANOVA和高维的非参数单向单向 MONOVA。 为了在实践中实施测试程序, 我们引入了基于样本的误差第二时刻的测算器, 并讨论其属性。 模拟研究表明, 我们提议的测试在各种环境下优于一些现有的测试。