With the wide application of sparse ToF sensors in mobile devices, RGB image-guided sparse depth completion has attracted extensive attention recently, but still faces some problems. First, the fusion of multimodal information requires more network modules to process different modalities. But the application scenarios of sparse ToF measurements usually demand lightweight structure and low computational cost. Second, fusing sparse and noisy depth data with dense pixel-wise RGB data may introduce artifacts. In this paper, a light but efficient depth completion network is proposed, which consists of a two-branch global and local depth prediction module and a funnel convolutional spatial propagation network. The two-branch structure extracts and fuses cross-modal features with lightweight backbones. The improved spatial propagation module can refine the completed depth map gradually. Furthermore, corrected gradient loss is presented for the depth completion problem. Experimental results demonstrate the proposed method can outperform some state-of-the-art methods with a lightweight architecture. The proposed method also wins the championship in the MIPI2022 RGB+TOF depth completion challenge.
翻译:在移动设备中广泛应用了稀疏的 ToF 传感器后,RGB 图像引导的深度完成最近引起了广泛的关注,但仍面临一些问题。首先,多式联运信息的整合需要更多的网络模块来处理不同的方式。但是,分散的 ToF 测量的应用情景通常要求轻量结构和低计算成本。第二,利用密集像素的 RGB 数据将稀疏和吵的深度数据与密集的像素数据混为一体,可能会引入人工制品。在本文件中,提议了一个光但有效的深度完成网络,由两分支的全球和局部深度预测模块和漏斗锥体空间传播网络组成。双管结构提取和将光重骨的跨模式特征引信。改进的空间传播模块可以逐步完善完整的深度地图。此外,还提出了深度完成问题的纠正梯度损失。实验结果表明,拟议的方法可以用轻量结构优于一些最先进的方法。拟议的方法也赢得了MIPI2022 RGB+TOF 深度完成挑战的冠军。