Node classification based on graph convolutional networks (GCNs) is vulnerable to adversarial attacks by malicious perturbations on graph structures, such as inserting or deleting graph edges. In this paper, by given a general attack model, we concretize the vulnerability of the GCN into a concrete description: The edge-read permission to GCN makes it vulnerable. We propose the Anonymous GCN (AN-GCN) which capable of making nodes participate in classification anonymously, thus withdraw the edge-read permission of the GCN. Extensive evaluations demonstrate that, by keeping the anonymity of node position while classification, AN-GCN block malicious perturbations passing along to the visible edge, meanwhile keep high accuracy (2.93\% higher than the state of the art GCN)


翻译:以图形革命网络(GCN)为基础的节点分类很容易受到图形结构(如插入或删除图形边缘)恶意干扰的对抗性攻击,例如插入或删除图形边缘。在本文中,通过给定一般攻击模型,我们将GCN的脆弱性具体化为具体的描述:GCN的边际读读许可使其变得脆弱。我们建议匿名GCN(AN-GCN)能够匿名参与分类,从而撤销GCN的边际访问许可。广泛的评估表明,通过保持节点位置匿名,同时分类,AN-GCN街区恶意扰动沿可见边缘移动,同时保持高度准确性(2.93 ⁇ /%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/%/

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
相关论文
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
16+阅读 · 2019年4月4日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员