Numerous meta-heuristic algorithms have been influenced by nature. Over the past couple of decades, their quantity has been significantly escalating. The majority of these algorithms attempt to emulate natural biological and physical phenomena. This research concentrates on the Flower Pollination algorithm, which is one of several bio-inspired algorithms. The original approach was suggested for pollen grain exploration and exploitation in confined space using a specific global pollination and local pollination strategy. As a "swarm intelligence" meta-heuristic algorithm, its strength lies in locating the vicinity of the optimum solution rather than identifying the minimum. A modification to the original method is detailed in this work. This research found that by changing the specific value of "switch probability" with dynamic values of different dimension sizes and functions, the outcome was mainly improved over the original flower pollination method.
翻译:无数的元湿运算法都受到自然的影响。 在过去的几十年中,它们的数量大幅上升。 这些算法大多试图模仿自然生物和物理现象。 这项研究集中研究花粉polination 算法, 这是几种生物驱动的算法之一。 最初的方法是使用特定的全球授粉和地方授粉策略在有限的空间探索和利用花粉谷物。 作为“ 温暖智能” 的元湿运算法, 其强度在于定位最佳解决方案的附近, 而不是确定最小值。 对原始方法的修改在这项工作中得到了详细介绍。 这项研究发现,通过改变“ 切换概率” 的具体价值, 以及不同维度大小和功能的动态值, 其结果主要是在原始花粉授粉方法上得到了改进。