Vision-based formation control systems recently have attracted attentions from both the research community and the industry for its applicability in GPS-denied environments. The safety assurance for such systems is challenging due to the lack of formal specifications for computer vision systems and the complex impact of imprecise estimations on distributed control. We propose a technique for safety assurance of vision-based formation control. Our technique combines (1) the construction of a piecewise approximation of the worst-case error of perception and (2) a classical Lyapunov-based safety analysis of the consensus control algorithm. The analysis provides the ultimate bound on the relative distance between drones. This ultimate bound can then be used to guarantee safe separation of all drones. We implement an instance of the vision-based control system on top of the photo-realistic AirSim simulator. We construct the piecewise approximation for varying perception error under different environments and weather conditions, and we are able to validate the safe separation provided by our analysis across the different weather conditions with AirSim simulation.
翻译:最近,基于愿景的形成控制系统吸引了研究界和业界对其在GPS绝缘环境中的适用性的关注。这些系统的安全保障具有挑战性,因为计算机视觉系统缺乏正式规格,而且对分布式控制的估计不准确,因此对分布式控制影响复杂。我们提议了一种基于愿景的形成控制安全保障技术。我们的技术结合了(1) 构筑最差的感知误差,以及(2) 基于共识控制算法的经典Lyapunov安全分析。分析为无人机之间的相对距离提供了最终界限。这一最终界限可用于保证所有无人机的安全分离。我们在光真知灼见的AirSim模拟器顶部实施了一个基于愿景的控制系统实例。我们为不同环境和天气条件下的不同感知误构建了一种假近,我们可以用AirSim模拟验证我们的分析在不同天气条件下提供的安全分离。