Modern large scale datasets are often plagued with missing entries. For tabular data with missing values, a flurry of imputation algorithms solve for a complete matrix which minimizes some penalized reconstruction error. However, almost none of them can estimate the uncertainty of its imputations. This paper proposes a probabilistic and scalable framework for missing value imputation with quantified uncertainty. Our model, the Low Rank Gaussian Copula, augments a standard probabilistic model, Probabilistic Principal Component Analysis, with marginal transformations for each column that allow the model to better match the distribution of the data. It naturally handles Boolean, ordinal, and real-valued observations and quantifies the uncertainty in each imputation. The time required to fit the model scales linearly with the number of rows and the number of columns in the dataset. Empirical results show the method yields state-of-the-art imputation accuracy across a wide range of data types, including those with high rank. Our uncertainty measure predicts imputation error well: entries with lower uncertainty do have lower imputation error (on average). Moreover, for real-valued data, the resulting confidence intervals are well-calibrated.


翻译:现代大型数据集往往被缺失条目所困扰。 对于缺少值的表格数据, 大量估算算法解决了完整的矩阵, 从而最大限度地减少某些惩罚性重建错误。 但是, 几乎没有人能够估计其估算值的不确定性。 本文提出了一个概率和可缩放框架 。 我们的模型, 低等级高斯 科普拉, 增加了标准的概率模型, 概率主元元分析, 每列的边际转换使得模型能够更好地匹配数据分布。 它自然处理布尔、 圆形、 实际估值的观察, 并对每个估算值的不确定性进行量化。 将模型尺度与行数和数据集列数进行线性调整所需的时间。 信使方法产生包括高等级数据在内的各种数据类型的最新估算准确性。 我们的不确定性测量预测了估算错误: 低不确定性的条目具有较低的估算率, 以及每个估算值的误差( 平均) 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
62+阅读 · 2021年3月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
11+阅读 · 2019年7月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Normal Forms for Tensor Rank Decomposition
Arxiv
0+阅读 · 2021年3月12日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员