This paper develops a physics-informed neural network (PINN) based on the Schwarz waveform relaxation (SWR) method for solving local and nonlocal advection-diffusion-reaction equations. Specifically, we derive the formulation by constructing subdomain-dependent local solutions by minimizing local loss functions, allowing the decomposition of the training process in different domains in an embarrassingly parallel procedure. Provided the convergence of PINN, the overall proposed algorithm is convergent. By constructing local solutions, one can, in particular, adapt the depth of the deep neural networks, depending on the solution's spectral space and time complexity in each subdomain. We present some numerical experiments based on classical and Robin-SWR to illustrate the performance and comment on the convergence of the proposed method.


翻译:本文根据Schwarz波形放松(SWR)解决当地和非当地对流扩散反应方程式的方法,发展了一个物理知情神经网络(PINN),具体地说,我们通过建立次级依赖本地解决方案,最大限度地减少本地损失功能,使培训过程在不同领域分解,以令人尴尬的平行程序为条件,从而形成一个物理知情神经网络(PINN),如果PINN的趋同,总体的拟议算法是趋同的。通过建立本地解决方案,人们尤其能够根据解决方案的光谱空间和每个子领域的时间复杂性,调整深层神经网络的深度。我们根据古典和罗宾-SWR,提出一些数字实验,以说明拟议方法的趋同性并发表意见。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员