This paper develops a physics-informed neural network (PINN) based on the Schwarz waveform relaxation (SWR) method for solving local and nonlocal advection-diffusion-reaction equations. Specifically, we derive the formulation by constructing subdomain-dependent local solutions by minimizing local loss functions, allowing the decomposition of the training process in different domains in an embarrassingly parallel procedure. Provided the convergence of PINN, the overall proposed algorithm is convergent. By constructing local solutions, one can, in particular, adapt the depth of the deep neural networks, depending on the solution's spectral space and time complexity in each subdomain. We present some numerical experiments based on classical and Robin-SWR to illustrate the performance and comment on the convergence of the proposed method.
翻译:本文根据Schwarz波形放松(SWR)解决当地和非当地对流扩散反应方程式的方法,发展了一个物理知情神经网络(PINN),具体地说,我们通过建立次级依赖本地解决方案,最大限度地减少本地损失功能,使培训过程在不同领域分解,以令人尴尬的平行程序为条件,从而形成一个物理知情神经网络(PINN),如果PINN的趋同,总体的拟议算法是趋同的。通过建立本地解决方案,人们尤其能够根据解决方案的光谱空间和每个子领域的时间复杂性,调整深层神经网络的深度。我们根据古典和罗宾-SWR,提出一些数字实验,以说明拟议方法的趋同性并发表意见。