We introduce a new hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations. If particular velocity, pressure, magnetic field, and magnetic pressure spaces are employed for both element and trace solution fields, we arrive at an energy stable method which returns pointwise divergence-free velocity fields and magnetic fields and properly balances linear momentum. We discretize in time using a second-order-in-time generalized-$\alpha$ method, and we present a block iterative method for solving the resulting nonlinear system of equations at each time step. We numerically examine the effectiveness of our method using a manufactured solution and observe our method yields optimal convergence rates in the $L_2$ norm for the velocity field, pressure field, magnetic field, and magnetic pressure field. We further find our method is pressure robust. We then apply our method to a selection of benchmark problems and numerically confirm our method is energy stable.
翻译:我们为不可压缩磁力动力学方程式采用了一种新的混合不连续的Galerkin方法。如果对元素和痕量溶液场使用特定的速度、压力、磁场和磁力压力空间,我们就会找到一种能源稳定方法,它返回点偏差速度场和磁场,并适当地平衡线性动力。我们用第二顺序的通用-$/alpha$法方法在时间上分解,我们提出一个块迭代方法,用以解决每步每步产生的非线性方程式系统。我们用制造的溶液对方法的有效性进行定量审查,并观察我们的方法在速度场、压力场、磁场和磁力压力场的$_2标准中产生最佳汇合率。我们进一步发现我们的方法是强大的压力。然后我们用我们的方法来选择基准问题,然后用数字证实我们的方法是稳定的能源。