This dissertation explores the impact of bias in deep neural networks and presents methods for reducing its influence on model performance. The first part begins by categorizing and describing potential sources of bias and errors in data and models, with a particular focus on bias in machine learning pipelines. The next chapter outlines a taxonomy and methods of Explainable AI as a way to justify predictions and control and improve the model. Then, as an example of a laborious manual data inspection and bias discovery process, a skin lesion dataset is manually examined. A Global Explanation for the Bias Identification method is proposed as an alternative semi-automatic approach to manual data exploration for discovering potential biases in data. Relevant numerical methods and metrics are discussed for assessing the effects of the identified biases on the model. Whereas identifying errors and bias is critical, improving the model and reducing the number of flaws in the future is an absolute priority. Hence, the second part of the thesis focuses on mitigating the influence of bias on ML models. Three approaches are proposed and discussed: Style Transfer Data Augmentation, Targeted Data Augmentations, and Attribution Feedback. Style Transfer Data Augmentation aims to address shape and texture bias by merging a style of a malignant lesion with a conflicting shape of a benign one. Targeted Data Augmentations randomly insert possible biases into all images in the dataset during the training, as a way to make the process random and, thus, destroy spurious correlations. Lastly, Attribution Feedback is used to fine-tune the model to improve its accuracy by eliminating obvious mistakes and teaching it to ignore insignificant input parts via an attribution loss. The goal of these approaches is to reduce the influence of bias on machine learning models, rather than eliminate it entirely.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IJCAI2022《对抗序列决策》教程,164页ppt
专知会员服务
46+阅读 · 2022年7月27日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
KDD2022 | 基于自监督超图Transformer的推荐算法研究
机器学习与推荐算法
1+阅读 · 2022年8月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月6日
Arxiv
0+阅读 · 2023年10月6日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关资讯
KDD2022 | 基于自监督超图Transformer的推荐算法研究
机器学习与推荐算法
1+阅读 · 2022年8月26日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员