Differential evolution (DE) is an effective global evolutionary optimization algorithm using to solve global optimization problems mainly in a continuous domain. In this field, researchers pay more attention to improving the capability of DE to find better global solutions, however, the computational performance of DE is also a very interesting aspect especially when the problem scale is quite large. Firstly, this paper analyzes the design of parallel computation of DE which can easily be executed in Math Kernel Library (MKL) and Compute Unified Device Architecture (CUDA). Then the essence of the exponential crossover operator is described and we point out that it cannot be used for better parallel computation. Later, we propose a new exponential crossover operator (NEC) that can be executed parallelly with MKL/CUDA. Next, the extended experiments show that the new crossover operator can speed up DE greatly. In the end, we test the new parallel DE structure, illustrating that the former is much faster.
翻译:差异进化(DE)是一种有效的全球进化优化算法,主要用于在连续领域解决全球优化问题。在这一领域,研究人员更加关注提高DE找到更好的全球解决方案的能力,然而,DE的计算性能也是一个非常有趣的方面,特别是在问题规模相当大的情况下。首先,本文件分析了DE的平行计算设计,该计算很容易在数学内尔图书馆(MKL)和计算统一设备结构(CUDA)中执行。然后描述了指数交叉操作器的精髓,我们指出它无法用于更好的平行计算。后来,我们建议建立一个与MKL/CUDA平行执行的新的指数交叉操作器(NEC)。接下来,延长的实验表明新的交叉操作器可以大大加速DE。最后,我们测试新的平行的DE结构,说明前者的速度要快得多。