In recent years, deep network-based methods have continuously refreshed state-of-the-art performance on Salient Object Detection (SOD) task. However, the performance discrepancy caused by different implementation details may conceal the real progress in this task. Making an impartial comparison is required for future researches. To meet this need, we construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods. Specifically, we re-implement 14 representative SOD methods by using consistent settings for training. Moreover, two additional protocols are set up in our benchmark to investigate the robustness of existing methods in some limited conditions. In the first protocol, we enlarge the difference between objectness distributions of train and test sets to evaluate the robustness of these SOD methods. In the second protocol, we build multiple train subsets with different scales to validate whether these methods can extract discriminative features from only a few samples. In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others. Therefore, we propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals. Experiments prove that our EA loss reports more robust performances compared to existing losses.


翻译:近年来,基于网络的深层次方法不断更新了关于显性物体探测(SOD)任务的最新表现,然而,不同执行细节导致的绩效差异可能掩盖了这项任务的实际进展。需要为今后的研究进行公正的比较。为了满足这一需要,我们设计了一个一般性的 " 显性物体探测(SALOD) " (SALOD)基准,以便对若干具有代表性的SOD方法进行全面比较。具体地说,我们通过使用一致的培训环境,重新实施14种具有代表性的SOD方法。此外,还在我们的基准中设置了两个额外的协议,以调查某些有限条件下现有方法的稳健性。在第一项协议中,我们扩大了火车目标分布和测试装置之间的差异,以评价这些SOD方法的稳健性。在第二项协议中,我们建造了多个具有不同尺度的火车子集,以验证这些方法能否从少数具有区别性特征的方法。在上文的实验中,我们发现现有的损失功能通常专门用于某些计量标准,但报告的结果较差。因此,我们建议了一个新的E-Aware(EA)损失等级,这可以促进深层次的网络学习更可靠的实验性图像,以便学习更牢固的实验性损失。

0
下载
关闭预览

相关内容

超氧化物歧化酶(Superoxide dismutase,SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员