This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are provided in order to facilitate generalisation, however, this year we have replaced the TRECVid2019 Video-to-Text dataset with the VideoMem dataset in order to remedy underlying data quality issues, and to prioritise short-term memorability prediction by elevating the Memento10k dataset as the primary dataset. Additionally, a fully fledged electroencephalography (EEG)-based prediction sub-task is introduced. In this paper, we outline the core facets of the task and its constituent sub-tasks; describing the datasets, evaluation metrics, and requirements for participant submissions.
翻译:本文介绍了作为MediaEval2022的一部分的第五版《预测视频模拟任务》。今年,我们重组和简化了这项任务,以便进行更深入的调查。与去年相似,我们提供了两个数据集,以便于概括化。然而,今年,我们用视频Memet数据集取代了TRECVid2019视频到图文数据集,以纠正潜在的数据质量问题,并通过将Memento10k数据集提升为主要数据集,对短期可计量性进行了优先预测。此外,还引入了完全成熟的基于电传的预测子任务。我们在本文件中概述了任务的核心方面及其构成子任务;描述了数据集、评价指标和参与者提交文件的要求。