We introduce a family of high-order time semi-discretizations for semilinear wave equations of Klein--Gordon type with arbitrary smooth nonlinerities that are uniformly accurate in the non-relativistic limit where the speed of light goes to infinity. Our schemes do not require pre-computations that are specific to the nonlinearity and have no restrictions in step size. Instead, they rely upon a general oscillatory quadrature rule developed in a previous paper (Mohamad and Oliver, arXiv:1909.04616).
翻译:我们引入了一族高阶时间半离散化方案,适用于具有任意光滑非线性项的Klein-Gordon型半线性波动方程,这些方案在光速无限制极限下均匀精确。我们的方案不需要针对非线性项的特定预计算,并且步长没有限制。相反,它们依赖于之前一篇论文(Mohamad和Oliver,arXiv:1909.04616)中开发的一般振荡求积公式。