The objective of this paper is to develop predictive models to classify Brazilian legal proceedings in three possible classes of status: (i) archived proceedings, (ii) active proceedings, and (iii) suspended proceedings. This problem's resolution is intended to assist public and private institutions in managing large portfolios of legal proceedings, providing gains in scale and efficiency. In this paper, legal proceedings are made up of sequences of short texts called "motions." We combined several natural language processing (NLP) and machine learning techniques to solve the problem. Although working with Portuguese NLP, which can be challenging due to lack of resources, our approaches performed remarkably well in the classification task, achieving maximum accuracy of .93 and top average F1 Scores of .89 (macro) and .93 (weighted). Furthermore, we could extract and interpret the patterns learned by one of our models besides quantifying how those patterns relate to the classification task. The interpretability step is important among machine learning legal applications and gives us an exciting insight into how black-box models make decisions.


翻译:本文的目的是制定预测模型,将巴西的法律程序分为三种可能的地位类别:(一) 存档程序,(二) 进行中的程序和(三) 暂停的程序,这一问题的解决旨在协助公共和私营机构管理大量的法律诉讼组合,在规模和效率方面带来收益;在本文件中,法律程序由称为“动作”的短文本序列组成。我们结合了几种自然语言处理和机器学习技术来解决问题。虽然与葡萄牙国家语言方案合作(由于缺乏资源而可能具有挑战性),但我们的方法在分类任务中表现得非常出色,达到了.93分和最高平均F1分.89分(宏观)和.93分(加权)的最大精确度。此外,我们可以提取和解释我们一个模型所学的模式,除了量化这些模式与分类任务的关系外,还可以对这些模式中的一种模式所学的模式加以归纳和解释。在机器学习法律应用程序中,解释性步骤很重要,并使我们对黑盒模型如何作出决定有了令人兴奋的洞察力。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员