We summarized both common and novel predictive models used for stock price prediction and combined them with technical indices, fundamental characteristics and text-based sentiment data to predict S&P stock prices. A 66.18% accuracy in S&P 500 index directional prediction and 62.09% accuracy in individual stock directional prediction was achieved by combining different machine learning models such as Random Forest and LSTM together into state-of-the-art ensemble models. The data we use contains weekly historical prices, finance reports, and text information from news items associated with 518 different common stocks issued by current and former S&P 500 large-cap companies, from January 1, 2000 to December 31, 2019. Our study's innovation includes utilizing deep language models to categorize and infer financial news item sentiment; fusing different models containing different combinations of variables and stocks to jointly make predictions; and overcoming the insufficient data problem for machine learning models in time series by using data across different stocks.


翻译:我们总结了用于股票价格预测的通用和新型预测模型,并将其与技术指数、基本特征和基于文字的情绪数据相结合,以预测股票价格。S & P 500指数方向预测的准确率为66.18%,单项股票方向预测的准确率为62.09%,方法是将随机森林和LSTM等不同机器学习模型合并为最先进的组合模型。我们使用的数据包含每周历史价格、财务报告和与2000年1月1日至2019年12月31日当前和以前的S & P 500大资本公司发行的518种不同共同股票相关的新闻项目文本信息。我们的研究创新包括利用深语言模型对金融新闻项目进行分类和推断;利用包含不同变量和库存的不同组合的不同模型联合作出预测;通过使用不同库存的数据克服时间序列中机器学习模型的数据不足的问题。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Arxiv
2+阅读 · 2021年10月15日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员