We prove that $\mathbb{F}_p$ sketch, a well-celebrated streaming algorithm for frequency moments estimation, is differentially private as is when $p\in(0, 1]$. $\mathbb{F}_p$ sketch uses only polylogarithmic space, exponentially better than existing DP baselines and only worse than the optimal non-private baseline by a logarithmic factor. The evaluation shows that $\mathbb{F}_p$ sketch can achieve reasonable accuracy with strong privacy guarantees.


翻译:我们证明$\mathbb{F\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
已删除
将门创投
3+阅读 · 2019年10月18日
Arxiv
0+阅读 · 2021年11月20日
Network Generation with Differential Privacy
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月16日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
Top
微信扫码咨询专知VIP会员